The Smith Meter® Model 210 Valve is typically used in conjunction with either the Smith Meter® AccuLoad®, MiniLoad, or Model SS1 Controller and Preset Counter for preset loading control at load racks, bulk plants, or processing installations.

Features

- Simple control loop.
- Control loop isolation valves.
- Low pressure drop.
- Separate opening and closing speed control.
- Compound spring.
- Horizontal or vertical applications.
- Full range of optional control functions.

Optional

- 2" Reduced Port Valve – Ideal for renewable fuels blending.

Operation

The Smith Meter Model 210 Valve is a Smith Meter 200 Series Valve with two solenoid controls (see Figure 1). The normally-open (N.O.) and normally-closed (N.C.) solenoids, located in the upstream and downstream portions of the control loop, respectively, control the operation of the valve. With both solenoids energized, high upstream pressure is blocked allowing the product in the cover to vent to low downstream pressure, opening the main valve. Conversely, de-energizing both solenoids allows high upstream pressure to close the valve.

Energizing just the N.O. solenoids locks fluid in the valve cover, which locks the valve poppet in a fixed position, to maintain a constant flow rate as long as operating conditions do not change. When operating conditions (e.g., pressures) change, causing a change in flow rate for that fixed valve opening, the flow controller (e.g., SS1 or AccuLoad) signals the appropriate solenoid to open momentarily to readjust flow rate back to its set value.

When the set flow rate changes (e.g., from low flow start to high flow limit, or during multi-step valve shutdown), the appropriate solenoid is signalled to open until flow rate adjusts to the new set value. See Figure 2 for a typical truck loading flow rate sequence.

Located between each solenoid and the main valve port is a valve response control device, typically a ball valve.

Figure 1 — Model 210 Valve Schematic

Figure 2 — Typical Load Cycle
This device is used to fine tune the opening/closing rate of the valve, as well as providing total control loop isolation for ease of service. Adjustment of these devices controls the flow to the cover chamber, permitting adjustments based on product viscosities and pressures.

Specifications

Maximum Viscosity
Up to 200 SSU (40 mPa·s)
Above 200 SSU (40 mPa·s), consult factory.

Pressure Rating/Connections
Class 150 ASME, 285 psi (19.6 bar)
Class 300 ASME, 300 psi (20.7 bar)

Temperature Range

<table>
<thead>
<tr>
<th>Valve Elastomer</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS (Low Swell) Buna</td>
<td>-20°F to 200°F (-28°C to 93°C)</td>
</tr>
<tr>
<td>Buna-N</td>
<td>-20°F to 200°F (-28°C to 93°C)</td>
</tr>
<tr>
<td>Viton</td>
<td>-20°F to 350°F (-28°C to 177°C)</td>
</tr>
</tbody>
</table>

Materials of Construction

<table>
<thead>
<tr>
<th>Valve</th>
<th>Housing</th>
<th>Internals</th>
<th>Seals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Valve</td>
<td>Cast Steel</td>
<td>Stainless Steel, Carbon Steel, Ni-Resist Ductile Iron Options: Epoxy Coating</td>
<td>Low Swell Buna*, Buna-N</td>
</tr>
<tr>
<td>Solenoid</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
<td>Viton-A, Chemraz Viton-F</td>
</tr>
<tr>
<td>Ball Valves†</td>
<td>Steel</td>
<td>Chrome Plated Steel</td>
<td>Teflon</td>
</tr>
<tr>
<td>Needle Valves*</td>
<td>Steel</td>
<td>Stainless Steel</td>
<td>Grafoil</td>
</tr>
<tr>
<td>Tubings & Fittings</td>
<td>—</td>
<td>See Note Below</td>
<td>—</td>
</tr>
</tbody>
</table>

†Standard.
*Optional.

Note: Stainless Steel Ball Valves, Needle Valves, and/or Tubing and Fittings Available.

Pressure Drop (When Valve is Not Flow-Limiting)

![Pressure Drop Graph](image)

Voltage (Solenoids)
Standard: 110/120 Vac, 50/60 Hz.
Optional: 220/240 Vac, 50/60 Hz.
24 Vdc.
12 Vdc.
Other voltages, consult factory.

1 \(1 \text{ mPa·s} = 1 \text{ cP} \)
2 Pressure ratings are based on temperatures of -20°F to 100°F (-28°C to 38°C). For operation at higher temperatures, the maximum working pressure may be derated.
3 PED requirements limit applications to liquids with maximum vapor pressures of .5 bar above atmospheric pressure, at maximum allowable temperature.
4 For temperature outside these ranges, consult factory.

Page 2 • SS03009

Issue/Rev. 0.5 (12/07)
Dimensions
Inches (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>A Class 150 ASME Flange</th>
<th>A Class 300 ASME Flange</th>
<th>B Class 150 ASME Flange</th>
<th>B Class 300 ASME Flange</th>
<th>C</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" & 2" RP</td>
<td>8.0" (203)</td>
<td>8.5" (216)</td>
<td>3.0" (76)</td>
<td>3.3" (84)</td>
<td>5.5" (140)</td>
<td>46</td>
</tr>
<tr>
<td>3"</td>
<td>11.0" (279)</td>
<td>11.8" (300)</td>
<td>3.8" (97)</td>
<td>4.1" (104)</td>
<td>7.0" (178)</td>
<td>83</td>
</tr>
<tr>
<td>4"</td>
<td>13.5" (343)</td>
<td>14.1" (358)</td>
<td>4.5" (114)</td>
<td>5.0" (127)</td>
<td>8.0" (203)</td>
<td>136</td>
</tr>
<tr>
<td>6"</td>
<td>17.0" (432)</td>
<td>17.9" (455)</td>
<td>5.5" (140)</td>
<td>6.3" (160)</td>
<td>10.8" (274)</td>
<td>258</td>
</tr>
</tbody>
</table>

Note: Dimensions — Inches to the nearest tenth (millimeters to the nearest whole mm), each independently dimensioned from respective engineering drawings.
Revisions included in SS03009 Issue/Rev. 0.5 (12/07):
Added optional reduced port valve for renewable fuels blending applications.

The specifications contained herein are subject to change without notice and any user of said specifications should verify from the manufacturer that the specifications are currently in effect. Otherwise, the manufacturer assumes no responsibility for the use of specifications which may have been changed and are no longer in effect.

Headquarters:
1803 Gears Road, Houston, TX 77067 USA, Phone: +1 (281) 260-2190, Fax: +1 (281) 260-2191

Gas Measurement Products:
Houston, TX USA +1 (281) 260-2190
Thetford, England +44 (1842) 82-2900
Kongsberg, Norway +47 (32) 286-700
Buenos Aires, Argentina +54 (11) 4312-4736

Integrated Measurement Systems:
Corpus Christi, TX USA +1 (361) 289-3400
Kongsberg, Norway +47 (32) 286-700
San Juan, Puerto Rico +1809 (787) 274-3760
United Arab Emirates, Dubai +971 (4) 331-3646

Liquid Measurement Products:
Erie, PA USA +1 (814) 898-5000
Los Angeles, CA USA +1 (310) 328-1236
Slough, England +44 (1753) 57-1515
Ellerbek, Germany +49 (4101) 304-0
Barcelona, Spain +34 (93) 201-0989
Moscow, Russia +7 (495) 564-8705
Melbourne, Australia +61 (3) 9807-2818

Visit our website at www.fmctechnologies.com/measurementsolutions

Printed in U.S.A. © 10/95 FMC Technologies Measurement Solutions, Inc. All rights reserved. SS03009 Issue/Rev. 0.5 (12/07)